
Need Help? Speak with an Advisor: www.udacity.com/advisor

C++
N A N O D E G R E E P R O G R A M S Y L L A B U S

http://www.udacity.com/advisor

C++ | 2Need Help? Speak with an Advisor: www.udacity.com/advisor

Overview
Learn C++, a high-performance programming language used in the world’s most exciting engineering jobs --
from self-driving cars and robotics, to web browsers, media platforms, servers, and even video games.

Get hands-on experience by coding five real-world projects. Learn to build a route planner using
OpenStreetMap data, write a process monitor for your computer, and implement your own smart pointers.
Finally, showcase all your newfound skills by building a multithreaded traffic simulator and coding your own
C++ application.

Prerequisite Knowledge: To optimize your chances of success in the C++ Nanodegree program, we
recommend intermediate knowledge of any programming language.

Prerequisites:
Intermediate
Programming

Flexible Learning:
Self-paced, so
you can learn on
the schedule that
works best for you.

Estimated Time:
4 Months at
10hrs/week

Need Help?
udacity.com/advisor
Discuss this program
with an enrollment
advisor.

http://www.udacity.com/advisor
http://udacity.com/advisor

C++ | 3Need Help? Speak with an Advisor: www.udacity.com/advisor

Course 1: C++ Foundations
Learn basic C++ syntax, functions, containers, and compiling and linking with multiple files. Use OpenStreetMap
and the 2D visualization library IO2D to build a route planner that displays a path between two points on a map.

LEARNING OUTCOMES

LESSON ONE Introduction to the
C++ Language

• Build on your previous programming experience to learn
 the basics of the C++ language
• Use vectors, loops, and I/O libraries to parse data from a
 file and print an ASCII board. You will use this board in the
 next lesson for a simplified route planning application.

LESSON TWO A* Search

• Learn about the A* search algorithm.
• Use your A* search implementation to plan a path through
 the obstacles in the ASCII board. The program will also be
 able to print the solution to the screen with clean ASCII
 formatting.

LESSON THREE Writing Multifile
Programs

• Learn the syntax for C++ language features
• Complete an overview of header files, pointers, build tools,
 and classes

Course Project
Build an OpenStreetMap
Route Planner

You’ll learn about OpenStreetMap data and look at IO2D map
display code. You will extend the IO2D map display code to use A*,
so your program will be able to find a path between two points
on the map. When the project is finished, you will be able to select
starting and ending areas on a city map, and your program will find
a path along the city streets to connect the start and end.

http://www.udacity.com/advisor

C++ | 4Need Help? Speak with an Advisor: www.udacity.com/advisor

 Course 2: Object-Oriented Programming
Explore Object-Oriented Programming (OOP) in C++ with examples and exercises covering the essentials
of OOP like abstraction and inheritance all the way through to advanced topics like polymorphism and
templates. In the end, you’ll build a Linux system monitor application to demonstrate C++ OOP in action!

LEARNING OUTCOMES

LESSON ONE Introduction to
OOP in C++

• Meet your instructors, get some context for what object
 oriented programming (OOP) is
• Practice implementing some of the basic features of OOP, like
 encapsulation and abstraction.

LESSON TWO Access Modifiers
and Inheritance

• C++ classes have extensive functionality when it comes to what
 kind of members you can define within a class and how you can
 prevent or provide access to those members. In addition, like
 many other languages, one class can inherit from another. In
 this lesson, you’ll investigate the intricacies of access modifiers
 and inheritance to build more complex C++ classes.

LESSON THREE Polymorphism
and Templates

• Write member functions for a class that do different things
 depending on what parameters you pass to them.
• Using templates, write generic functions that accept
 many different kinds of input parameter types. With these tools
 you will add more diverse functionality to your C++ classes

Course Project
System Monitor

In this project, you’ll get a chance to put C++ OOP into action! You’ll
write a Linux system monitor with similar functionality to the widely
used htop application. This will not only provide you more familiarity
the Linux operating system, but also give you insights into how a
collection of objects can function together in C++ to form an exciting
and complete application!

http://www.udacity.com/advisor

C++ | 5Need Help? Speak with an Advisor: www.udacity.com/advisor

 Course 3: Memory Management
Discover the power of memory management in C++ by diving deep into stack vs. heap, pointers,
references, new, delete, smart pointers, and much more. By the end, you’ll be ready to work on a
chatbot using modern C++ memory management techniques!

LEARNING OUTCOMES

LESSON ONE Overview of
Memory Types

• Understand the memory hierarchy in computer systems,
 which is the basis for efficient memory management
• Cover basic concepts such as cache, virtual memory, and the
 structure of memory addresses.
• Demonstrate how the debugger can be used to read data
 from memory

LESSON TWO Variables and
Memory

• In this section, the process memory model is introduced,
 which contains the two fundamental memory areas, heap and
 stack, which play an important role in C++.
• Review the concepts of call-by-value and call-by-reference
 to lay the foundations for the memory-efficient passing of
 parameters.

LESSON THREE
Dynamic Memory
Allocation (The
Heap)

• This section introduces dynamic memory allocation on the
 heap. Understand the main difference between stack and
 heap - the latter requires the programmer to take decisions
 about the correct allocation and deallocation of memory.
• Learn the commands malloc and free, as well as new and
 delete, that are available for allocation of memory.
• Review some of the most common problems with manual
 memory management

Course Project
ChatBot

The ChatBot project creates a dialogue where users can ask questions
about some aspects of memory management in C++. Your task will
be to optimize the project with memory management in mind using
modern concepts such as smart pointers and move semantics.

http://www.udacity.com/advisor

C++ | 6Need Help? Speak with an Advisor: www.udacity.com/advisor

LEARNING OUTCOMES

LESSON FOUR Resource Copying
Policies

• Customize resource copying using the Rule of Three.
• Learn the basis for move semantics, lvalue and rvalue
• Understand how the mechanism for memory efficient
 programming is one of the most important innovations in C++
 and enables fast and low-cost data transfers between
 program scopes.
• Understand the Rule of Five, which helps develop a thorough
 memory management strategy in your code.

LESSON FIVE Smart Pointers

• Understand why smart pointers are a valuable tool for C++
 programmers and how they help to avoid memory leaks and
 make it possible to establish a clear and concise resource
 ownership model.
• Compare the three types of smart pointers in C++
• Learn how to transfer ownership from one program part to
 another using copy and move semantics.

http://www.udacity.com/advisor

C++ | 7Need Help? Speak with an Advisor: www.udacity.com/advisor

 Course 4: Concurrency
Concurrent programming runs multiple threads of execution in parallel. Concurrency is an advanced
programming technique that, when properly implemented, can dramatically accelerate your C++ programs.

LEARNING OUTCOMES

LESSON ONE Managing Threads

• Learn the differences between processes and threads.
• Start your own threads in various ways and pass data to
them.
• Write your own concurrent program running multiple
threads at the same time.

LESSON TWO Passing Data
Between Threads

• Use promises and futures as a safe communication channel
between threads.
• Use tasks as an easy alternative to threads.
• Understand data races and learn about strategies to avoid
them.

LESSON THREE Mutexes, Locks, and
Condition Variables

• Use mutexes and locks to safely access shared data from
various threads.
• Use condition variables as a basic synchronization tool
between threads.
• Understand and implement a concurrent message queue
for flexible inter-thread communication.

Course Project
Concurrent Traffic
Simulation

Build a multithreaded traffic simulator using a real urban map.
Run each vehicle on a separate thread, and manage intersections
to facilitate traffic flow and avoid collisions using state-of-the-art
concurrency concepts.

http://www.udacity.com/advisor

C++ | 8Need Help? Speak with an Advisor: www.udacity.com/advisor

Course 4: Capstone Project
Put your C++ skills to use on a project of your own! You’ll utilize the core concepts from this Nanodegree
program - object-oriented programming, memory management, and concurrency - to build your own
application using C++.

Course Project
Build Your Own C++
Application

• Choose your application.
• Design the architecture.
• Build a prototype.

Complete your application, utilizing the core skills you have
developed: C++ fundamentals, object-oriented programming,
memory management, and concurrency.

http://www.udacity.com/advisor

C++ | 9Need Help? Speak with an Advisor: www.udacity.com/advisor

Our Classroom Experience
REAL-WORLD PROJECTS
Build your skills through industry-relevant projects. Get
personalized feedback from our network of 900+ project
reviewers. Our simple interface makes it easy to submit
your projects as often as you need and receive unlimited
feedback on your work.

KNOWLEDGE
Find answers to your questions with Knowledge, our
proprietary wiki. Search questions asked by other students
and discover in real-time how to solve the challenges that
you encounter.

STUDENT HUB
Leverage the power of community through a simple, yet
powerful chat interface built within the classroom. Use
Student Hub to connect with your technical mentor and
fellow students in your Nanodegree program.

WORKSPACES
See your code in action. Check the output and quality of
your code by running them on workspaces that are a part
of our classroom.

QUIZZES
Check your understanding of concepts learned in the
program by answering simple and auto-graded quizzes.
Easily go back to the lessons to brush up on concepts
anytime you get an answer wrong.

CUSTOM STUDY PLANS
Work with a mentor to create a custom study plan to suit
your personal needs. Use this plan to keep track of your
progress toward your goal.

PROGRESS TRACKER
Stay on track to complete your Nanodegree program with
useful milestone reminders.

http://www.udacity.com/advisor

C++ | 10Need Help? Speak with an Advisor: www.udacity.com/advisor

Learn with the Best

David Silver
HE AD OF SELF - DRIV ING C AR S

AT UDACIT Y

David Silver leads the School of
Autonomous Systems at Udacity. Before

Udacity, David was a research engineer on
the autonomous vehicle team at Ford. He
has an MBA from Stanford, and a BSE in

Computer Science from Princeton.

Ermin Kreponic
SOF T WARE ENGINEER

AT ABS TR AC T THINKING

Ermin Kreponic is a skilled Java & C++
developer who has taught dozens of online

courses in multiple coding languages.
Ermin currently works as a cyber-security

training architect and is a strong proponent
of open-source technologies.

Stephen Welch
CONTENT DE VELOPER

AT UDACIT Y

Stephen is a Content Developer at
Udacity and has worked on the C++ and
Self-Driving Car Engineer Nanodegree

programs. He started teaching and coding
while completing a Ph.D. in mathematics,

and has been passionate about
engineering education ever since.

Andreas Haja
PROFESSOR

AT UNIVER SIT Y OF APPLIED SCIENCES

Andreas Haja is an engineer, educator, and
autonomous vehicle enthusiast. Andreas
now works as an engineering professor in

Germany. Previously, he developed computer
vision algorithms and autonomous vehicle

prototypes using C++.

http://www.udacity.com/advisor

C++ | 11Need Help? Speak with an Advisor: www.udacity.com/advisor

All Our Nanodegree Programs Include:

EXPERIENCED PROJECT REVIEWERS

RE VIE WER SERVICES

 • Personalized feedback & line by line code reviews
 • 1600+ Reviewers with a 4.85/5 average rating
 • 3 hour average project review turnaround time
 • Unlimited submissions and feedback loops
 • Practical tips and industry best practices
 • Additional suggested resources to improve

TECHNICAL MENTOR SUPPORT

MENTOR SHIP SERVICES

 • Questions answered quickly by our team of
 technical mentors
 • 1000+ Mentors with a 4.7/5 average rating
 • Support for all your technical questions

PERSONAL CAREER SERVICES

C AREER SUPPORT

 • Resume support
 • Github portfolio review
 • LinkedIn profile optimization

http://www.udacity.com/advisor

C++ | 12Need Help? Speak with an Advisor: www.udacity.com/advisor

Frequently Asked Questions
PROGR AM OVERVIE W

WHY SHOULD I ENROLL?
C++ is a compiled, high-performance language. Robots, automobiles, and
embedded software all depend on C++ for speed of execution. This program
is designed to turn software engineers into C++ developers. You will use C++
to develop object-oriented programs, to manage memory and system
resources, and to implement parallel programming.

WHAT JOBS WILL THIS PROGRAM PREPARE ME FOR?
C++ is the industry standard for high-performance computer programming.
As such, advanced knowledge of this programming language can open the
doors for you to work in a variety of industries, including C++ engineering,
robotics software, IoT, mobile communications, video game development,
operating systems, networking, AI, embedded systems, and more. Your
opportunities and roles might include:

 • C++ Software Developer
 • Self-Driving Car Engineer
 • Robotics Software Engineer
 • Embedded Systems Engineer
 • Entry-Level Game Programmer

HOW DO I KNOW IF THIS PROGRAM IS RIGHT FOR ME?
This program is right for you if you’re an intermediate-level programmer
familiar with functions and classes who wants to become a C++ developer or
pursue a career in robotics software, IoT, mobile communications, video game
development, operating systems, networking, AI, embedded systems, and more.

ENROLLMENT AND ADMISSION

DO I NEED TO APPLY? WHAT ARE THE ADMISSION CRITERIA?
There is no application. This Nanodegree program accepts everyone,
regardless of experience and specific background.

WHAT ARE THE PREREQUISITES FOR ENROLLMENT?
To optimize your chances of success in the C++ Nanodegree program,
we recommend intermediate knowledge of any programming language.

IF I DO NOT MEET THE REQUIREMENTS TO ENROLL, WHAT SHOULD I DO?
For students who have little or no coding background, our Introduction to
Programming Nanodegree program is an opportunity to learn object-oriented
programming in Python. If you are interested in self-driving cars and have no
programming experience, the Intro to Self-Driving Cars Nanodegree program will

http://www.udacity.com/advisor

C++ | 13Need Help? Speak with an Advisor: www.udacity.com/advisor

FAQs Continued
teach you the basics of object-oriented programming in C++, as well as linear
algebra and calculus.

TUITION AND TERM OF PROGR AM

HOW IS THIS NANODEGREE PROGRAM STRUCTURED?
The C++ Nanodegree program is comprised of content and curriculum to
support five (5) projects. We estimate that students can complete the program
in four (4) months, working 10 hours per week.

Each project will be reviewed by the Udacity reviewer network. Feedback will
be provided and if you do not pass the project, you will be asked to resubmit
the project until it passes.

HOW LONG IS THIS NANODEGREE PROGRAM?
Access to this Nanodegree program runs for the length of time specified in
the payment card on the Nanodegree program overview page. If you do not
graduate within that time period, you will continue learning with month to
month payments. See the Terms of Use for other policies around the terms of
access to our Nanodegree programs.

I HAVE GRADUATED FROM THE C++ NANODEGREE PROGRAM, WHERE
SHOULD I GO FROM HERE?
We highly recommend the Self-Driving Car Engineer, Robotics Software Engineer,
and Flying Car and Autonomous Flight Engineer Nanodegree programs. All of
these programs use C++, and as a graduate of the C++ Nanodegree program,
you’ll have the coding skills necessary to succeed in these programs and the
opportunity to specialize in specific areas of robotics and autonomous systems.

SOF T WARE AND HARDWARE

WHAT SOFTWARE AND VERSIONS WILL I NEED IN THIS PROGRAM?
For this Nanodegree program, you will code with C++17. An internet connection
is required. All coding can be done in our GPU-enabled Linux Workspace that
runs in your browser.

http://www.udacity.com/advisor
https://www.udacity.com/legal/en-us/terms-of-use

